N49 - SALTS

N49 - SALTS

TARGET:

I can identify if a salt is acidic, basic or neutral. I can use information about the composition of the salt to calculate the pH of an aqueous solution made with the salt

Link to YouTube Presentation: https://youtu.be/c2d1J0GjwTo

WHAT IS A SALT?

An ionic compound formed when an acid and a base react with each other

NaOH + HCl
$$\rightarrow$$
 H₂O + NaCl
NH₄OH + HCl \rightarrow H₂O + NH₄Cl

HOW DO SALTS BEHAVE WHEN YOU PUT THEM IN WATER?

They dissociate – the ions separate

NaCl
$$\rightarrow$$
 Na⁺ + Cl⁻
NH₄Cl \rightarrow NH₄⁺ + Cl⁻

HOW DO THE IONS BEHAVE ONCE THEY HAVE DISSOCIATED?

The ions can sometimes "hydrolyze" Meaning they can react with the water.

$$NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$$

The ion has to be "strong" enough for this to happen (we will explain which ions are strong in a minute!)

WHAT IS THE RESULT OF THIS (POTENTIAL) HYDROLYSIS?

Once the ion hydrolyzes with the water it can make the salt solution acidic, basic, or neutral

$$NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$$

 $CO_3^{2-} + H_2O \rightarrow HCO_3^- + OH^-$
 $CI^- + H_2O \rightarrow CI^- + H_2O$

solution is ACIDIC

solution is BASIC

CI- is not strong enough to hydrolyze so solution is NEUTRAL

HOW DO YOU KNOW IF IT IS "STRONG" ENOUGH TO HYDROLYZE?

Have to think about the properties of the acids/bases that the ion came from

	Turns into a	Hydrolyzes?
Strong Acid	Weak <u>er</u> conjugate base	No
Weak Acid	Strong er conjugate base	Yes
Strong Base	Weak <u>er</u> conjugate acid	No
Weak Base	Strong er conjugate acid	Yes

WHY DOES STRONG TURN INTO WEAK AND VICE VERSA?

Think about where equilibrium lies for the original acid/base...

$$HCI \longleftrightarrow H^+ + CI^-$$

- Strong acid, most dissociates so eq. lies to the right.
- It "wants" to be broken into its ions.
- So if it wants to be broken into H⁺ and Cl⁻ ...
 - Is the Cl-going to be able to go around taking H+ off water to form HCl???

No!

STEPS TO PREDICT ph OF A SALT SOLUTION

1. Identify acid or base that the salt ions came from

STEPS TO PREDICT pH OF A SALT SOLUTION

- 2. Determine if the ions will hydrolyze
 - Figure out if they came from a strong or weak acid/base
 - From strong → ion won't hydrolyze neutral contribution
 - From weak → ion will hydrolyze acidic or basic contribution

STEPS TO PREDICT ph of A SALT SOLUTION

3. If it hydrolyzes identify if the hydrolysis of the ion would form acid or base.

	Turns into a	Hydrolyzes?	lon makes sol'n
Strong Acid	Weak <u>er</u> conjugate base	No	Neutral
Weak Acid	Stronger conjugate base	Yes	Basic
Strong Base	Weak <u>er</u> conjugate acid	No	Neutral
Weak Base	Stronger conjugate acid	Yes	Acidic

STEPS TO PREDICT ph OF A SALT SOLUTION

4. Figure out what the combo of each ion's contribution would be to the solution

	Makes the solution
Acidic + Neutral	Acidic
Basic + Neutral	Basic
Neutral + Neutral	Neutral
Acidic + Basic	Compare Ka and Kb to determine which "wins"

STEPS TO PREDICT ph of A SALT SOLUTION

- 5. To determine the "winner" when acidic + basic
 - Compare the Ka and Kb values
 - The higher one means it is stronger, more dissociation so it will contribute more to the resulting solution

$Ka_{(ion)} > Kb_{(ion)}$	Acidic
$Ka_{(ion)} < Kb_{(ion)}$	Basic
$Ka_{(ion)} = Kb_{(ion)}$	Neutral

The problem...

You rarely have the Ka and Kb for the CONJUGATE IONS you are interested in. You usually only have them for the STARTING acid/base they came from. Ugh...

FINDING K_{A(ION)} AND K_{B(ION)}

 $Kw = Ka \times Kb$

If you want Ka of an ion \rightarrow need Kb of the base it came from If you want Kb of an ion \rightarrow need Ka of the acid it came from

<u>Practice Problem: What is the Ka of NH₄+?</u>

Use Kb of NH₃ (1.8 x 10⁻⁵) plug in and solve for Ka_(ion) (1 x 10⁻¹⁴) = Ka_(ion) x (1.8 x 10⁻⁵) Ka_(ion) NH₄⁺ = 5.56 x 10⁻¹⁰

Is KBr an acidic, basic, or neutral salt?

K⁺ Br-

K⁺ → KOH Strong Base

→ so K⁺ is Weak<u>er</u> acid

→ No Hydrolysis

→ Neutral effect

Br⁻ → HBr Strong Acid

→ so Br⁻ is Weak<u>er</u> base

→ No Hydrolysis

→ Neutral effect

	Turns into a	Hydrolyzes?	lon makes sol'n
Strong Acid	Weak <u>er</u> conjugate base	No	Neutral
Weak Acid	Stronger conjugate base	Yes	Basic
Strong Base	Weak <u>er</u> conjugate acid	No	Neutral
Weak Base	Strong er conjugate acid	Yes	Acidic

Is KBr an acidic, basic, or neutral salt?

K⁺ Br-

 $K^+ \rightarrow KOH$ Strong Base \rightarrow so K^+ is Weak<u>er</u> acid \rightarrow No Hydrolysis \rightarrow Neutral effect

 $Br \rightarrow HBr$ Strong Acid \rightarrow so Br is Weak<u>er</u> base \rightarrow No Hydrolysis

→ Neutral effect

	Makes the solution
Acidic + Neutral	Acidic
Basic + Neutral	Basic
Neutral + Neutral	Neutral
Acidic + Basic	Compare Ka and Kb to determine which "wins"

So KBr is a NEUTRAL SALT!

Is K₂CO₃ an acidic, basic, or neutral salt?

$$K^{+}$$
 CO_3^{2-}

 $K^+ \rightarrow KOH$ Strong Base \rightarrow so K^+ is Weak<u>er</u> acid \rightarrow No Hydrolysis \rightarrow Neutral effect

 $CO_3^{2-} \rightarrow H_2CO_3$ Weak Acid \rightarrow so CO_3^{2-} is Stronger Base \rightarrow Hydrolysis \rightarrow Basic effect

	Turns into a	Hydrolyzes?	lon makes sol'n
Strong Acid	Weak <u>er</u> conjugate base	No	Neutral
Weak Acid Stronger conjugate base		Yes	Basic
Strong Base Weak <u>er</u> conjugate acid		No	Neutral
Weak Base	Strong er conjugate acid	Yes	Acidic

Is K₂CO₃ an acidic, basic, or neutral salt?

$$K^{+}$$
 CO_3^{2-}

 $K^+ \rightarrow KOH$ Strong Base \rightarrow so K^+ is Weak<u>er</u> acid \rightarrow No Hydrolysis \rightarrow Neutral effect

 $CO_3^{2-}\rightarrow H_2CO_3$ Weak Acid \rightarrow so CO_3^{2-} is Stronger Base \rightarrow Hydrolysis

→ Basic effect

	Makes the solution
Acidic + Neutral	Acidic
Basic + Neutral	Basic
Neutral + Neutral	Neutral
Acidic + Basic	Compare Ka and Kb to determine which "wins"

So K₂CO₃ is a BASIC SALT!

Is NH₄Br an acidic, basic, or neutral salt?

 $NH_4^+ \rightarrow NH_3$ Weak Base \rightarrow so NH_4^+ is Stronger acid \rightarrow Hydrolysis \rightarrow Acidic effect

Br→HBr Strong Acid→ so Br- is Weak<u>er</u> Base→ No Hydrolysis → Neutral effect

	Turns into a	Hydrolyzes?	lon makes sol'n
Strong Acid	Weak <u>er</u> conjugate base	No	Neutral
Weak Acid	Stronger conjugate base	Yes	Basic
Strong Base	Weak <u>er</u> conjugate acid	No	Neutral
Weak Base	Strong er conjugate acid	Yes	Acidic

Is NH₄Br an acidic, basic, or neutral salt?

 $NH_4^+ \rightarrow NH_3$ Weak Base \rightarrow so NH_4^+ is Stronger acid \rightarrow Hydrolysis \rightarrow Acidic effect

Br→HBr Strong Acid→ so Br- is Weak<u>er</u> Base→ No Hydrolysis

→ Neutral effect

	Makes the solution
Acidic + Neutral	Acidic
Basic + Neutral	Basic
Neutral + Neutral	Neutral
Acidic + Basic	Compare Ka and Kb to determine which "wins"

So NH₄Br is an ACIDIC SALT!

Is NH₄CN an acidic, basic, or neutral salt?

NH₄⁺ CN⁻

 $NH_4^+ \rightarrow NH_3$ Weak Base \rightarrow so NH_4^+ is Stronger acid \rightarrow Hydrolysis

→ Acidic effect

 $CN^-\rightarrow HCN$ Weak Acid \rightarrow so CN^- is Stronger Base \rightarrow Hydrolysis \rightarrow Basic effect

	Turns into a	Hydrolyzes?	lon makes sol'n
Strong Acid	Weak <u>er</u> conjugate base	No	Neutral
Weak Acid	Stronger conjugate base	Yes	Basic
Strong Base	Weak <u>er</u> conjugate acid	No	Neutral
Weak Base	Strong er conjugate acid	Yes	Acidic

PRACTICE PROBLEM #4 Is NH₄CN an acidic, basic, or neutral salt?

 $NH_4^+ \rightarrow NH_3$ Weak Base \rightarrow so NH_4^+ is Stronger acid \rightarrow Hydrolysis \rightarrow Acidic effect $CN^- \rightarrow HCN$ Weak Acid \rightarrow so CN^- is Stronger Base \rightarrow Hydrolysis \rightarrow Basic effect

Kb NH₃ =
$$1.8 \times 10^{-5}$$
 \longrightarrow Ka NH₄⁺ = $(1.0 \times 10^{-14})/(1.8 \times 10^{-5})$ Ka HCN = 4.9×10^{-10} \longrightarrow Kb CN⁻ = $(1.0 \times 10^{-14})/(4.9 \times 10^{-10})$

$$Ka_{(NH4+)} = 5.56 \times 10^{-10}$$

 $Kb_{(CN-)} = 2.04 \times 10^{-5}$

$$Ka_{(NH4+)} < Kb_{(CN-)}$$

NH₄CN is a Basic Salt!

CALCULATING THE ACTUAL pH OF SALTS

WHAT IF YOU WANT THE ACTUAL pH VALUE?

- 1. Do all the steps needed to determine which ion is the "strong" one – which one is being hydrolyzed?
- 2. Write the hydrolysis reaction for that ion (or ions)
- 3. ICE Table time! Yes! More ICE tables! They just wont go away! © Use your hydrolysis rxn for ICE Table
- **4.** Find $[H_3O^+]$ or $[OH^-]$ from ICE Tables
- 5. Continue on with normal pH type calculations

What is the pH of a 0.25M NH₄NO₃ salt solution?

$$NH_4^+ NO_3^-$$

$$NH_4^+ \rightarrow NH_3$$
 Weak Base \rightarrow so NH_4^+ is Stronger acid \rightarrow Hydrolysis \rightarrow Acidic effect

 $NO_3^- \rightarrow HNO_3$ Strong Acid \rightarrow so NO_3^- is Weak<u>er</u> Base \rightarrow No Hydrolysis

→ Neutral effect

	Makes the solution
Acidic + Neutral	Acidic
Basic + Neutral	Basic
Neutral + Neutral	Neutral
Acidic + Basic	Compare Ka and Kb to determine which "wins"

So NH₄NO₃ is an ACIDIC SALT!

What is the pH of a 0.25M NH₄NO₃ salt solution?

NH₄⁺ is the ion contributing an acidic effect

<u>Hydrolysis</u>

$$NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$$

We don't have Ka NH_4^+ BUT...we do have... Kb $(NH_3) = 1.8 \times 10^{-5}$ And remember...

$$Kw = Ka \times Kb$$

We know the Kb for our conjugate (NH₃), so we just solve for the Ka of the ion we are interested in!

What is the pH of a 0.25M NH₄NO₃ salt solution?

$$\frac{\text{Hydrolysis}}{\text{NH}_4^+ + \text{H}_2\text{O} \rightarrow \text{NH}_3 + \text{H}_3\text{O}^+}$$

$$Ka (NH4+) = (1.0 × 10-14)/(1.8 × 10-5) = 5.56 × 10-10$$

Time for an ICE Table!

What is the pH of a 0.25M NH₄NO₃ salt solution?

 $\frac{\text{Hydrolysis}}{\text{NH}_4^+ + \text{H}_2\text{O} \rightarrow \text{NH}_3 + \text{H}_3\text{O}^+}$

	NH ₄ ⁺	+ H ₂ O	\rightarrow NH ₃	+ H ₃ O ⁺
	0.25		0	0
C	- X		+ X	+ X
E	0.25 - x		X	X
5%	0.25		X	X
Ans.				

What is the pH of a 0.25M NH₄NO₃ salt solution?

	NH ₄ ⁺	+ H ₂ O	\rightarrow NH ₃	+ H ₃ O+
I	0.25		0	0
С	- X		+ X	+ X
E	0.25 – x		X	Х
5%	0.25		X	Х
Ans.	0.25		1.18×10^{-5}	1.18×10^{-5}

$$Ka = \frac{[NH_3][H_3O^+]}{[NH_4^+]}$$

$$5.56 \times 10^{-10} = \frac{(x)(x)}{(0.25)}$$

$$x = 1.18 \ x \ 10^{-5}$$

Time for pH calculation!

What is the pH of a 0.25M NH₄NO₃ salt solution?

$$[H_3O^+] = 1.18 \times 10^{-5}$$

$$pH = -\log(1.18 \times 10^{-5})$$

$$pH = 4.93$$

Finally finished!

YOUTUBE LINK TO PRESENTATION

https://youtu.be/c2d1J0GjwTo